Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Heng Xu, ${ }^{\text {a }}$ Jingli Xie, ${ }^{\text {b }}$ Xiaoming Ren ${ }^{\text {c* }}$ and Youcun Chen ${ }^{\text {a }}$

${ }^{\text {a Department of Chemistry, Anqing Normal }}$ College, Anqing 246011, People's Republic of China, ${ }^{\text {b }}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\text {c }}$ Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, Postfach 800665, D-70569 Stuttgart, Germany

Correspondence e-mail: x.ren@fkf.mpg.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.041$
$w R$ factor $=0.088$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

The bis(maleonitriledithiolato)zincate(II) complex of the monoprotonated 4,4'-bipyridine cation

In the title salt, $\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$ or [4,4'bipyH $]\left[\mathrm{Zn}(\mathrm{mnt})_{2}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$, where mnt^{2-} denotes maleonitriledithiolate and $4,4^{\prime}$-bipyH is monoprotonated $4,4^{\prime}$-bipyridine, the $\mathrm{Zn}^{\text {II }}$ ion is tetrahedrally surrounded by four S atoms of two mnt^{2-} ligands. The counter-cations, $4,4^{\prime}$-bipyH ${ }^{+}$, form onedimensional chains through strong (pyridine)N$\mathrm{H} \cdots \mathrm{N}$ (pyridine) hydrogen-bonding interactions. Anions and cations stack in alternating layers which are nearly parallel to the $b c$ plane of the crystallographic unit cell.

Comment

In recent years, the principles of supramolecular chemistry, in which a great deal of new concepts concerning intermolecular non-covalent interactions, such as hydrogen-bonding and $\pi-\pi$ stacking interactions, have been introduced into the area of materials science (Saadeh et al., 2000; Lawrence et al., 1999). Some of the resulting materials have exhibited novel properties (Gardner et al., 1995; Venkataraman et al., 1995; Fujita et al., 1994; Yaghi et al., 1995).

More recently, we have focussed attention on the construction of $\left[M(\mathrm{mnt})_{2}\right]^{-}\left(M=\mathrm{Ni}^{\mathrm{III}}, \mathrm{Pd}^{\mathrm{III}}\right.$ and $\left.\mathrm{Pt}^{\mathrm{III}}\right)$ with pyridinium derivatives, in which the CN groups of the mnt^{2-} ligand and the $\mathrm{H}-\mathrm{N}$ groups of the pyridinium derivatives may have hydrogen-bonding interactions, and have found that there are strong bifurcated hydrogen-bonding interactions between these molecules (Ren, Chen et al., 2002; Ren, Lu et al., 2002). We have obtained one-dimensional to threedimensional molecular magnets based on this class of building block. It has been known that a number of salts consisting of pyridinium and some anions with tetrahedral configurations, namely, tetrafluoroborate, perchlorate, periodate, fluorosulfonate and perrhenate, appear to be ferroelectric (Czarnecki et al., 1994a,b; Wasicki et al., 1997; Pajak et al., 1998, 2000, 2002; Szafranski et al., 2002). It is also worth noting that there exist bifurcated hydrogen-bonding interactions exist between O or F atoms of anions and the H atom of pyridinium in those ferroelectric materials referred to above.

(I)

The molecular geometries of the anions of $\left[M(\mathrm{mnt})_{2}\right]^{2-}$, where M denotes Zn or Cd , are tetrahedral and similar to the above inorganic anions, so it is expected that new ferroelectric

Received 14 November 2002 Accepted 20 November 2002 Online 30 November 2002

Figure 1
The structure of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The one-dimensional chain of cations formed by hydrogen-bond interactions.
material families based on ion-pair complexes, which form bipyridinum derivatives and $\left[\mathrm{Zn}(\mathrm{mnt})_{2}\right]^{2-}\left(\right.$ or $\left.\left[\mathrm{Cd}(\mathrm{mnt})_{2}\right]^{2-}\right)$ can be obtained. In this communication, we report the crystal structure of $\left[4,4^{\prime} \text {-bipyH }\right]_{2}\left[\mathrm{Zn}(\mathrm{mnt})_{2}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$, (I).

The structure of (I) is composed of $4,4^{\prime}$-bipyH ${ }^{+}$monovalent cations and $\left[\mathrm{Zn}(\mathrm{mnt})_{2}\right]^{2-}$, together with an acetonitrile solvent molecule (Fig. 1). The anion consists of a $\mathrm{Zn}^{\mathrm{II}}$ ion surrounded by four S atoms of two mnt^{2-} ligands, forming a distorted tetrahedron $\left(\mathrm{ZnS}_{4}\right)$. The $\mathrm{Zn}-\mathrm{S}$ distances range from 2.3223 (9) to 2.3373 (9) \AA, with internal $\mathrm{S}-\mathrm{Zn}-\mathrm{S}$ chelating angles ranging between 92.22 (3) and 92.95 (3) ${ }^{\circ}$ (Table 1). The dihedral angle between the $\mathrm{Zn} 1 / \mathrm{S} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{S} 2$ and $\mathrm{Zn} 1 / \mathrm{S} 3 / \mathrm{C} 6 /$ C7/S4 least-squares planes is $87.61(4)^{\circ}$; thus they are almost perpendicular to each other. These results are in agreement with that of $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}\left[\mathrm{Zn}(\mathrm{mnt})_{2}\right]$ (Stach et al., 1986). In (I), the cations of the two bipyridyl rings twist away from one another, and the dihedral angles between the two pyridyl rings of $4,4^{\prime}$ bipyridine is $18.9(2)^{\circ}$ for the molecule containing N 5 , and 22.2 (2) ${ }^{\circ}$ for the molecule containing N7. The H atoms bonded to the N atoms of $4,4^{\prime}$-bipyridine are disordered; this was also found in other compounds containing bipyridine (Lough et al., 2000). The relative occupancies of the H atoms are $0.25 / 0.75$ for $\mathrm{H} 5 A / \mathrm{H} 6 A$ and $0.25 / 0.75$ for $\mathrm{H} 7 A / \mathrm{H} 8 A$. The adjacent $4,4^{\prime}-$ bipyridinium molecules are linked by strong hydrogenbonding interactions to form one-dimensional chains along the c axis of the unit cell (Fig. 2). The corresponding hydrogenbonding parameters are listed in Table 2, but there are no hydrogen-bonding interactions between N atoms of CN (mnt) and N atoms of $4,4^{\prime}$-bipyridinium. The anions and cations form alternating layers, which are nearly parallel to the $b c$ plane of the crystallographic unit cell (Fig. 3).

Experimental

Disodium maleonitriledithiolate ($\mathrm{Na}_{2} \mathrm{mnt}$) was prepared following the procedure in the literature (Davison \& Holm, 1967). 4,4 ${ }^{\prime}$-Bipyr-

Figure 3
The layered packing of alternating anions and cations in (I).
idinium chloride was prepared using 4,4'-bipyridine and one equivalent of dilute hydrochloric acid. A similar method for synthesizing $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]_{2}\left[\mathrm{Zn}(\mathrm{mnt})_{2}\right]$ (Davison \& Holm, 1967) was used to prepare $\left[4,4^{\prime}-\operatorname{bipyH}\right]_{2}\left[\mathrm{Zn}(\mathrm{mnt})_{2}\right]$. Good quality light-red single crystals, suitable for X-ray analysis, were obtained about a week after dispersing ethyl ether into an acetonitrile solution of (I).

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N} \quad Z=2$
$M_{r}=701.17$
Triclinic, $P \overline{1}$
$a=9.591$ (1) \AA
$b=10.086$ (1) \AA
$D_{x}=1.485 \mathrm{Mg} \mathrm{m}^{-3}$
$c=16.659$ (2) \AA
Mo $K \alpha$ radiation
Cell parameters from 120 reflections
$\theta=2.5-25.0^{\circ}$
$\alpha=88.22$ (1) ${ }^{\circ}$
$\mu=1.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$\beta=76.84(1)^{\circ}$
Needle, light red
$\gamma=88.00(1)^{\circ}$
$V=1567.8(3) \AA^{3}$
$0.15 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.847, T_{\max }=0.901$
7842 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.088$
$S=1.01$
5422 reflections
398 parameters

H-atom parameters constrained
5422 independent reflections
3920 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 9$
$k=-10 \rightarrow 11$
$l=-19 \rightarrow 19$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.025 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}_{\AA^{-3}}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{S} 3$	$2.3223(9)$	$\mathrm{Zn} 1-\mathrm{S} 1$	$2.3277(10)$
$\mathrm{Zn} 1-\mathrm{S} 2$	$2.3225(10)$	$\mathrm{Zn} 1-\mathrm{S} 4$	$2.3373(9)$
$\mathrm{S} 3-\mathrm{Zn} 1-\mathrm{S} 2$	$122.76(4)$	$\mathrm{S} 3-\mathrm{Zn} 1-\mathrm{S} 4$	$92.22(3)$
$\mathrm{S} 3-\mathrm{Zn} 1-\mathrm{S} 1$	$116.27(4)$	$\mathrm{S} 2-\mathrm{Zn} 1-\mathrm{S} 4$	$116.18(4)$
$\mathrm{S} 2-\mathrm{Zn} 1-\mathrm{S} 1$	$92.95(3)$	$\mathrm{S} 1-\mathrm{Zn} 1-\mathrm{S} 4$	$118.89(3)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N5-H5A $\cdots \mathrm{N} 8$	0.86	1.80	$2.651(3)$	170
N8-H8A N^{2}	0.86	1.80	$2.651(3)$	173
N6-H6A N^{i}	0.86	1.88	$2.709(3)$	162
N7-H7A $\cdots \mathrm{N} 6^{\mathrm{ii}}$	0.86	1.86	$2.709(3)$	167

Symmetry codes: (i) $x, 1+y, z-1$; (ii) $x, y-1,1+z$.
All H atoms were placed in geometrically calculated positions ($\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA$), with $U_{\text {iso }}=1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This work was funded by the National Natural Science Foundation of China (project No. 20171001), the Anhui Province Education Commission of China (project No. 2001kj162) and the Natural Science Foundation of Anhui Province of China (project No. 01012038).

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Czarnecki, P., Nawrocik, W., Pajak, Z. \& Wasicki, J. (1994a). Phys. Rev. B, 49, 1511-1512.

Czarnecki, P., Nawrocik, W., Pajak, Z. \& Wasicki, J. (1994b). J. Phys. Condens. Mater. 6, 4955-4960.
Davison, A. \& Holm, H. R. (1967). Inorg. Synth. 10, 8-26.
Fujita, M., Kwon, S., Washizu, Y. J. \& Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.
Gardner, G. B., Venkataraman, D., Moore, J. S. \& Lee, S. (1995). Nature (London), 374, 792-795.
Lawrence, D. S., Jiang, T. \& Levett, M. (1999). Chem. Rev. 95, 2229-2260.
Lough, A. J., Wheatley, P. S., Ferguson, G. \& Glidewell, C. (2000). Acta Cryst. B56, 261-272.
Pajak, Z., Czarnecki, P., Wasicki, J. \& Nawrocik, W. (1998). J. Chem. Phys. 109, 6420-6423.
Pajak, Z., Czarnecki, P., Maluszynska, H., Szafranska, B. \& Szafran, M. (2000). J. Chem. Phys. 113, 848-853.

Pajak, Z., Maluszynska, H., Szafranska, B. \& Czarnecki, P. (2002). J. Chem. Phys. 117, 5303-5310.
Ren, X. M., Chen, Y. C., He, C. \& Gao, S. (2002). J. Chem. Soc. Dalton Trans. pp. 3915-3918.
Ren, X. M., Lu, C. S., Wu, P. H. \& Meng, Q. J. (2002). J. Chem. Crystallogr. 32, 173-177.
Saadeh, H., Wang, L. \& Yu, L. (2000). J. Am. Chem. Soc. 122, 546-547.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Stach, J., Kirmse, R., Sieler, J., Abram, U., Dietzsch, W., Bottcher, B., Hansen, L. K., Vergoossen, H., Gribnau, M. C. M. \& Keijzers, C. P. (1986). Inorg. Chem. 25, 1369-1373.
Szafranski, M., Katrusiak, A. \& McIntyre G. J. (2002). Phys. Rev. Lett. 89, 215507-1-215507-4.
Venkataraman, D., Gardner, G. B., Lee, S. \& Moore, J. S. (1995). J. Am. Chem. Soc. 117, 11600-11601.
Wasicki, J., Czarnecki, P., Pajak, Z., Nawrocik, W. \& Szczepanski, W. (1997). J. Chem. Phys. 107, 576-579.
Yaghi, O. M., Li, G. \& Li, H. (1995). Nature (London), 378, 703-706.

